Telencephalin slows spine maturation.
نویسندگان
چکیده
Dendritic filopodia are highly dynamic structures, and morphological maturation from dendritic filopodia to spines is intimately associated with the stabilization and strengthening of synapses during development. Here, we report that telencephalin (TLCN), a cell adhesion molecule belonging to the Ig superfamily, is a negative regulator of spine maturation. Using cultured hippocampal neurons, we examined detailed localization and functions of TLCN in spine development and synaptogenesis. At early stages of synaptogenesis, TLCN immunoreactivity gradually increased and was present in dendritic shafts and filopodia. At later stages, TLCN tended to be excluded from mature spine synapses in which PSD-95 (postsynaptic density-95) clusters were apposed to presynaptic synaptophysin clusters. To elucidate the function of TLCN in spine maturation, we analyzed the dendrite morphology of TLCN-overexpressing and TLCN-deficient neurons. Overexpression of TLCN caused a dramatic increase in the density of dendritic filopodia and a concomitant decrease in the density of spines. Conversely, TLCN-deficient mice showed a decreased density of filopodia and an acceleration of spine maturation in vitro as well as in vivo. These results demonstrate that TLCN normally slows spine maturation by promoting the filopodia formation and negatively regulating the filopodia-to-spine transition. In addition, we found that spine heads of mature neurons were wider in TLCN-deficient mice compared with wild-type mice. Thus, the preservation of immature synapses by TLCN may be an essential step for refinement of functional neural circuits in the telencephalon, that take charge of higher brain functions such as learning, memory, and emotion.
منابع مشابه
Interaction between telencephalin and ERM family proteins mediates dendritic filopodia formation.
Dendritic filopodia are long, thin, actin-rich, and dynamic protrusions that are thought to play a critical role as a precursor of spines during neural development. We reported previously that a telencephalon-specific cell adhesion molecule, telencephalin (TLCN) [intercellular adhesion molecule-5 (ICAM-5)], is highly expressed in dendritic filopodia, facilitates the filopodia formation, and slo...
متن کاملARF6-mediated endosomal transport of Telencephalin affects dendritic filopodia-to-spine maturation
Dendritic filopodia are dynamic structures thought to be the precursors of spines during synapse development. Morphological maturation to spines is associated with the stabilization and strengthening of synapses, and can be altered in various neurological disorders. Telencephalin (TLN/intercellular adhesion molecule-5 (ICAM5)) localizes to dendritic filopodia, where it facilitates their formati...
متن کاملActivation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage
Matrix metalloproteinase (MMP)-2 and -9 are pivotal in remodeling many tissues. However, their functions and candidate substrates for brain development are poorly characterized. Intercellular adhesion molecule-5 (ICAM-5; Telencephalin) is a neuronal adhesion molecule that regulates dendritic elongation and spine maturation. We find that ICAM-5 is cleaved from hippocampal neurons when the cells ...
متن کاملInhibition of Rho via Arg and p190RhoGAP in the postnatal mouse hippocampus regulates dendritic spine maturation, synapse and dendrite stability, and behavior.
The RhoA (Rho) GTPase is a master regulator of dendrite morphogenesis. Rho activation in developing neurons slows dendrite branch dynamics, yielding smaller, less branched dendrite arbors. Constitutive activation of Rho in mature neurons causes dendritic spine loss and dendritic regression, indicating that Rho can affect dendritic structure and function even after dendrites have developed. Howe...
متن کاملICAM-5 affects spine maturation by regulation of NMDA receptor binding to a-actinin
ICAM-5 is a negative regulator of dendritic spine maturation and facilitates the formation of filopodia. Its absence results in improved memory functions, but the mechanisms have remained poorly understood. Activation of NMDA receptors induces ICAM-5 ectodomain cleavage through a matrix metalloproteinase (MMP)dependent pathway, which promotes spine maturation and synapse formation. Here, we rep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 6 شماره
صفحات -
تاریخ انتشار 2006